Linux Security and Isolation APIs Fundamentals

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2024

mtk@man7.org

January 2024

Outline

11 Cgroups: Introduction

11.1 Preamble

11.2 What are control groups?

11.3 An example: the pids controller

11.4 Creating, destroying, and populating a cgroup
11.5 Enabling and disabling controllers

11-1
11-3
11-9
11-16
11-21
11-33

Outline

11 Cgroups: Introduction 11-1
11.1 Preamble 11-3
Goals

o We'll focus on:

e General principles of operation; goals of cgroups
o The cgroup?2 filesystem
e Interacting with cgroup?2 filesystem using shell commands

@ We'll look briefly at some of the controllers

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-4 §11.1

Resources

@ Kernel documentation files
@ V2: Documentation/admin-guide/cgroup-v2.rst

@ V1: Documentation/admin-guide/cgroup-vl/*.rst
o Before Linux 5.3: Documentation/cgroup-vl/*.txt
@ cgroups(7) manual page
@ Chris Down, 7 years of cgroup v2,
https://www.youtube.com/watch?v=LX6fM1IYZcg
@ Neil Brown's (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/
e Thought-provoking ideas on the meaning of grouping & hierarchy
@ https://lwn.net/Articles/484254/ — Tejun Heo's initial thoughts
about redesigning cgroups (Feb 2012)

@ See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

@ Other articles at https://1lwn.net/Kernel/Index/#Control_groups

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-5 §11.1

Some history

@ 2006/2007, “Process Containers” @ Google = Cgroups v1

@ Jan 2008: initial mainline kernel release (Linux 2.6.24)

o Three resource controllers (all CPU-related) in initial release
@ Subsequently, other controllers are added

e memory, devices, freezer, net_cls, blkio...
@ But a few years of uncoordinated design leads to a mess

e Decentralized design fails us... again

@ 2012: work has already begun on cgroups v2...

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-6 §11.1

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups

Some history

@ Sep 2015: systemd adds cgroup v2 support
o (Based on kernel 4.2)

@ Mar 2016: cgroups v2 officially released (Linux 4.5)

e But, lacks feature parity with cgroups vl

@ Jan 2018: cpu and devices controllers are released for
cgroups v2

o (Absence had been major roadblock to adoption of v2)

@ Oct 2019: Fedora 31 is first distro to move to v2-by-default

(%)

2020: Docker 20.10 gets cgroups v2 support

@ 2021: other distros move to v2-by-default
o Debian 11.0 (Aug 2021); Ubuntu 21.10 (Oct 2021); Arch

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-7 §11.1

We have passed the tipping point

@ We have passed the vl-to-v2 tipping point:

e systemd, Docker and other tools fully support cgroups v2,
and the distros have migrated to v2

e Cgroups v2 offers a number of advantages over vl

o = we'll focus on cgroups v2, and largely ignore cgroups vl

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-8 §11.1

Outline

11 Cgroups: Introduction 11-1

11.2 What are control groups? 11-9

What are control groups?

@ Two principal components:

e A mechanism for hierarchically grouping processes

o A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

@ Interface is via a pseudo-filesystem

@ Cgroup manipulation takes form of filesystem operations,
which might be done:

e Via shell commands
e Programmatically
o Via management daemon (e.g., systemd)

o Via your container framework’s tools (e.g., LXC, Docker)

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-10 §11.2

What do cgroups allow us to do?

@ Limit resource usage of group

o E.g., limit % of CPU available to group; limit amount of
memory that group can use

@ Resource accounting
o Measure resources used by processes in group

@ Limit device access
@ Pin processes to CPU cores
@ Shape network traffic

@ Freeze a group
o Freeze, restore, and checkpoint a group

@ And more...

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-11 §11.2

Terminology

@ Control group: a group of processes that are bound
together for purpose of resource management

o (Resource) controller: kernel component that controls or
monitors processes in a cgroup

e E.g., memory controller limits memory usage; cpu controller
limits CPU usage

e Also known as subsystem
o (But that term is rather ambiguous because so generic)

@ Cgroups are arranged in a hierarchy
e Each cgroup can have zero or more child cgroups

e Child cgroups inherit control settings from parent

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-12 §11.2

Filesystem interface

@ Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

o l.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

@ Each subdirectory contains automagically created files
e Some files are used to manage the cgroup itself

e Otbher files are controller-specific

@ Files in cgroup are used to:
o Define/display membership of cgroup

e Control behavior of processes in cgroup

o Expose information about processes in cgroup (e.g.,
resource usage stats)

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-13 §11.2

The cgroup? filesystem

@ On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup

o (or /sys/fs/cgroup/unified, if systemd is operating in
cgroups “hybrid” mode)

mount -t cgroup2 none /sys/fs/cgroup

@ The (pseudo)filesystem type is "“cgroup2”
e In cgroups vl, filesystem type is “cgroup”

@ The cgroups v2 mount is sometimes known as the “unified
hierarchy”

o Because all controllers are associated with a single hierarchy

e By contrast, in vl there were multiple hierarchies

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-14 §11.2

Booting to cgroups v2

@ You may be on a distro that uses systemd's “hybrid” mode
by default

e Hybrid mode combines use of cgroups v1 and v2

@ Problem: can’t simultaneously use a controller in both v1
and v2

@ Simplest solution is usually to reboot, so that systemd
abandons its hybrid mode, and uses just v2

o If this shows a value > 1, then you need to reboot:

$ grep -c cgroup /proc/mounts # Count cgroup mounts

o Either: use kernel boot parameter, cgroup_no_v1:
@ cgroup_no_vl=all = disable all v1 controllers

o Or: use systemd.unified_cgroup_hierarchy boot
parameter

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-15 §11.2

Outline

11 Cgroups: Introduction 11-1

11.3 An example: the pids controller 11-16

Example: the pids controller

@ pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)

@ Create new cgroup, and place shell’'s PID in that cgroup:

mkdir /sys/fs/cgroup/mygrp
echo $$
17273

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e cgroup.procs defines/displays PIDs in cgroup
o (Note '#' prompt = all commands done as superuser)

@ Moving a PID into a group automatically removes it from
group of which it was formerly a member

e l.e., a process is always a member of exactly one group in
the hierarchy

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-18 §11.3

Example: the pids controller

@ Can read cgroup.procs to see PIDs in group:

cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

o Where did PID 20591 come from?

o PID 20591 is cat command, created as a child of shell
@ Child process inherits cgroup membership from parent

@ pids.current shows how many processes are in group:

cat /sys/fs/cgroup/mygrp/pids.current
2

e Two processes: shell + cat

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-19 §11.3

Example: the pids controller

@ We can limit number of PIDs in group using pids.max file:

echo 5 > /sys/fs/cgroup/mygrp/pids.max

for a in $(seq 1 5); do sleep 60 & done

[1] 21283

[2] 21284

[3] 21285

[4] 21286

bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

o (The shell retries a few times and then gives up)

o pids.max defines/exposes limit on number of PIDs in
cgroup

@ From a different shell, examine pids.current:

$ cat /sys/fs/cgroup/mygrp/pids.current
5

o Not possible from first shell (can't create more processes)

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-20 §11.3

Outline

11 Cgroups: Introduction 11-1

11.4 Creating, destroying, and populating a cgroup 11-21

Creating cgroups

@ Initially, all processes on system are members of root
cgroup

@ New cgroups are created by creating subdirectories under
cgroup mount point:

mkdir /sys/fs/cgroup/mygrp

@ Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-22 §11.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory
@ Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

e Presence of zombie process does not prevent removal of
cgroup directory

o (Notionally, zombies are moved to root cgroup)

@ Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-23 §l11.4

Placing a process in a cgroup

@ To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e In multithreaded process, moves all threads to cgroup

e /\ Can write only one PID at a time
o Otherwise, write() fails with EINVAL

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-24 §11.4

Viewing cgroup membership

@ To see PIDs in cgroup, read cgroup.procs file
e PIDs are newline-separated

e Zombie processes do not appear in list

e /\ List is not guaranteed to be sorted or free of
duplicates

e PID might be moved out and back into cgroup or recycled
while reading list

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-25 §l11.4

Cgroup membership details

@ A process can be member of just one cgroup
o That association defines attributes / parameters that apply
to the process

@ Adding a process to a different cgroup automatically
removes it from previous cgroup

@ On fork(), child inherits cgroup membership(s) of parent
o Afterward, cgroup membership(s) of parent and child can
be independently changed

o Since Linux 5.7 (2020), a child process can be created in a
specific v2 cgroup using clone3() CLONE_INTO_CGROUP
@ See procexec/t_CLONE_INTO_CGROUP.c

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-26 §l11.4

/proc/PID/cgroup file

@ /proc/PID/cgroup shows cgroup memberships of PID

8:cpu, cpuacct:/cpugrp3
7:freezer:/

ETT/grpl

@ Hierarchy ID (0 for v2 hierarchy)

@ Can be matched to hierarchy ID in another file,
/proc/cgroups (but that file is not so interesting)

@ Comma-separated list of controllers bound to the hierarchy
o Field is empty for v2 hierarchy

© Pathname of cgroup to which this process belongs
e Pathname is relative to cgroup root directory

@ On a system booted in v2-only mode, there is just one line
in this file (0::...)

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-27 §11.4

Notes for online practical sessions

@ Small groups in breakout rooms

o Write a note into Slack if you have a preferred group

o We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions
@ Zoom has an “Ask for help” button...
o Keep an eye on the #general Slack channel

e Perhaps with further info about exercise;
e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished **¥**”

e Then | have an idea of how many people have finished

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-28 §l11.4

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
e In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+"“+" and Control+"“-"

@ Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
@ Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+Shift+:

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-29 §l11.4

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: ...

ssh session read only: ssh SOmErAnDOm5Tr1Ng@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5TriNg@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

@ Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-30 §11.4

Booting to cgroups v2

@ In preparation for the following exercises, if necessary reboot your
system to use cgroups v2 only, as follows...

@ First, check whether your system is already booted to use cgroups v2

only:
$ grep cgroup /proc/mounts # Is there a v2 mount?
cgroup2 /sys/fs/cgroup cgroup2 ...
$ grep cgroup /proc/mounts | grep -v name= | grep -vc cgroup2
0 == no vl controllers are mounted

o If there is a v2 mount, and no v1 controllers are mounted, then
you do not need to do anything further; otherwise:

@ From the GRUB boot menu, you can boot to cgroups v2—only mode by
editing the boot command (select a GRUB menu entry and type “e").
In the line that begins with “1inux”, add the following parameter:

systemd.unified_cgroup_hierarchy

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-31 §l11.4

Exercises

© In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

@ Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).

o Execute the following command, and note the PID assigned to
the resulting process:

sleep 300 &

@ Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.

@ Now write the PID of the process into the file m2/cgroup.procs.
@ Is the PID still visible in the file m1/cgroup.procs? Explain.

@ Try removing cgroup m1 using the command rm -rf mi. Why
doesn't this work?

o If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-32 §11.4

Outline

11 Cgroups: Introduction 11-1

11.5 Enabling and disabling controllers 11-33

Enabling and disabling controllers

@ Each cgroup v2 directory contains two files:
e cgroup.controllers: lists controllers that are available
in this cgroup

e cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

e Always a subset of cgroup.controllers

@ Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-34 §11.5

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

@ cgroup.controllers lists the controllers that are available
in a cgroup

@ Certain “automatic” controllers are available by default in
every cgroup, and are not listed in cgroup.controllers

o devices, freezer, network, perf_event

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-35 §11.5

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

@ A controller may not be available because:
e Controller is not enabled in parent cgroup
o (Does not appy for “automatic” controllers)
e The same controller is already in use in cgroups vl
@ Cgroups vl and v2 can coexist, but a controller can be used
in only one version

e Kernel was built without support for that controller

o Controller was disabled at boot time
@ Using the boot option cgroup_disable=namel,...]

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-36 §11.5

Enabling controllers: cgroup.subtree control

@ cgroup.subtree control is used to show or modify the

set of controllers that are enabled in a cgroup:

cd /sys/fs/cgroup/
cat cgroup.subtree_control
cpu io memory pids

e Set of controllers enabled in root cgroup will depend on

distro and systemd configuration and version

@ Contents of cgroup.subtree_control are always a subset

of cgroup.controllers

e l.e., can't enable controller that is not available in a cgroup

@ Controllers are enabled/disabled by writing to this file:

cat cgroup.subtree_control
cpuset cpu io memory pids

cat cgroup.subtree_control
cpu io memory pids

echo '+cpuset' > cgroup.subtree_control # Enable a controller

echo '-cpuset' > cgroup.subtree_control # Disable a controller

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction

11-37 §11.5

Enabling controllers: cgroup.subtree control

@ Enabling a controller in cgroup.subtree_control:
e Allows resource to be controlled in child cgroups

o Causes controller-specific attribute files to appear in

each child directory

@ Attribute files in child cgroups are used by process

managing parent cgroup to manage resource allocation

into child cgroups
e This is a significant difference from cgroups vl

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction

11-38 §11.5

cgroup.subtree_control example

@ Review situation in root cgroup:

cd /sys/fs/cgroup/

cat cgroup.controllers

cpuset cpu io memory hugetlb pids misc
cat cgroup.subtree_control

cpu io memory pids

@ Create a small subhierarchy:

mkdir -p grp_x/grp_y

@ Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:

cat grp_x/cgroup.controllers
cpu io memory pids
cat grp_x/cgroup.subtree_control # Empty...

@ Consequently, no controllers are available in grp_y:

cat grp_x/grp_y/cgroup.controllers # Empty...

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-39 §11.5

cgroup.subtree_control example

@ List cpu.x files in grp_y:

cd /sys/fs/cgroup/grp_x
1s grp_y/cpu.*
grp_y/cpu.pressure grp_y/cpu.stat

o (These two files show CPU-related statistics and are present
in every cgroup)

@ Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:

echo '+cpu' > cgroup.subtree_control

1s grp_y/cpu.x*

grp_y/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat

grp _v/cpu.weight.nice grp y/cpu.max grp_y/cpu.pressure
grp_y/cpu.weight

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-40 §11.5

cgroup.subtree_control example

@ After enabling controller in parent cgroup, we can limit
resources in child cgroup...

@ Set hard CPU limit of 50% in child cgroup (grp_y):
echo '50000 100000' > grp_y/cpu.max

@ In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:

echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

@ In the other terminal, we see:

$./cpu_burner
[6445] ¥CPU = 99.86
[6445] ¥CPU = 99.83
[6445] ¥CPU = 83.52
[6445] ¥CPU = 50.00
[6445] ¥CPU = 50.00
Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-41 §11.5

Managing controllers to differing levels of granularity

@ A controller is available in child cgroup only if it is
enabled in parent cgroup:

cat cgroup.controllers

cpuset cpu io memory hugetlb pids
cat cgroup.subtree control

cpu memory pids

cat grpl/cgroup.controllers

cpu memory pids

e cpuset, io, and hugetlb are not available in grpl

@ In grpl, none of the available controllers is initially enabled,
so no controllers are available at next level:

cat grpl/cgroup.controllers
cpu memory pids

cat grpl/cgroup.subtree_control # Empty
mkdir grp1l/{grpl10,grpii} # Make grandchild cgroups
cat grpl/grp2/cgroup.controllers # Empty

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-42 §11.5

Managing controllers to differing levels of granularity

@ If we enable cpu in grpl, it becomes available at next level

echo '+cpu' > grpl/cgroup.subtree_control
cat grpl/grpl0/cgroup.controllers
cpu

e And cpu interface files appear in grpl/{grp10,grpii}

@ Here, cpu is being managed at finer granularity than memory

o We can make distinct cpu allocation decisions for processes

in grpl10 vs processes in grpll
e But we can’t make distinct memory allocation decisions
@ grpl0 and grpll will share memory allocation from grp1
e We did this by design (so we can manage different
resources to different levels of granularity):
e We want distinct CPU allocations in grp10 and grpil1

e We want grp10 and grpl1l to share a memory allocation

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-43 §11.5

Top-down constraints

@ Child cgroups are always subject to any resource constraints
established by controllers in ancestor cgroups
e = Descendant cgroups can't relax constraints imposed by
ancestor cgroups

@ If a controller is disabled in a cgroup (i.e., not written to
cgroup.subtree_control in parent cgroup), it cannot be
enabled in any descendants of the cgroup

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-44 §11.5

No internal tasks rule

@ Cgroups v2 enforces a rule often expressed as: “a cgroup
can't have both child cgroups and member processes”

e l.e., only leaf nodes can have member processes
e The “no internal tasks” rule

@ But the rule can be expressed more precisely...
e A cgroup can't both:

o distribute a resource to child cgroups (i.e., enable
controllers in cgroup.subtree_control), and

@ have member processes

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-45 §11.5

No internal tasks rule

@ Revised statement: “A cgroup can’t both distribute
resources and have member processes”

o Conversely (1):
e A cgroup can have member processes and child cgroups...

o if it does not enable controllers for child cgroups

o Conversely (2):
o If cgroup has child cgroups and processes, the processes
must be moved elsewhere before enabling controllers

e E.g., processes could be moved to child cgroups

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-46 §11.5

No internal tasks rule

Further details on the no internal tasks rule:
@ The root cgroup is (necessarily) an exception to this rule

@ The rule is irrelevant for “automatic” controllers
o Because those controllers (e.g., freezer, devices) are
always available (i.e., don’t need to be enabled)
@ /\ The rule changes for certain controllers in Linux 4.14
o (The so-called “threaded controllers™)

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-47 §11.5

Exercises

@ This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

@ Check that the pids controller is visible in the cgroup root
cgroup.controllers file. If it is not, reboot the kernel as
described on slide 11-15.

e To simplify the following steps, change your current directory to
the cgroup root directory (i.e., the location where the cgroup?2
filesystem is mounted; on recent systemd-based systems, this will
be /sys/fs/cgroup, or possibly /sys/fs/cgroup/unified).

@ Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:

mkdir xxx

mkdir xxx/yyy

echo '+pids' > cgroup.subtree_control
echo '+pids' > xxx/cgroup.subtree_control

H H HH

[Exercise continues on next page...]

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-48 §11.5

Exercises

@ Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:

echo '10' > xxx/pids.max
echo '20' > xxx/yyy/pids.max

@ In another terminal, use the supplied cgroups/fork_bomb.c
program.

fork_bomb <num-children> [<child-sleep>]
Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:

$./fork_bomb 30

[Exercise continues on next page...]|

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-49 §11.5

Exercises

@ The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild pids cgroup:

echo parent-PID > xxx/yyy/cgroup.procs

@ In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

©Q This exercise demonstrates what happens if we try to enable a
controller in a cgroup that has member processes.

@ Under the cgroup root directory, create a new cgroup named
child, and enable the memory controller in the root cgroup:

cd /sys/fs/cgroup # or: cd /sys/fs/cgroup/unified
mkdir child
echo '+memory' > cgroup.subtree_control

[Exercise continues on the next slide]

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-50 §11.5

Exercises

e Start a process running sleep, and place the process into the
child cgroup:

sleep 1000 &
echo $! > child/cgroup.procs

e What happens if we now try to enable the memory controller in
the child cgroup via the following command?

echo '+memory' > child/cgroup.subtree_control

@ Does the result differ if we reverse the order of the preceding steps
(i.e., enable the controller, then place a process in the cgroup)?

Security and Isolation APIs Fundamentals©2024 M. Kerrisk Cgroups: Introduction 11-51 §11.5

Notes

