
NDC Security 2025

Linux containers
in (less than) 100 lines of shell

Michael Kerrisk, man7.org © 2025
22 January 2025, Oslo, Norway

mtk@man7.org

Outline Rev: # a1a0f41a9708

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Who?

Linux man-pages project
https://www.kernel.org/doc/man-pages/

Manual pages pages documenting syscalls and C library
Contributor since 2000
Maintainer 2004-2020
Comaintainer 2020-2021

I wrote a book
Trainer/writer/engineer
http://man7.org/training/
mtk@man7.org, @mkerrisk

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 3 / 87

https://www.kernel.org/doc/man-pages/
http://man7.org/training/

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

One day I wondered...

Can I create a (decent) container
with shell commands?

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 5 / 87

Building a container with shell commands

So, it is possible (opinions on “decent” might differ...)
(And can be automated in a few scripts)

It’s not a perfect container
Some untidy corners
Some set-up steps are omitted or need to be done manually

E.g., defining cgroup settings
And other limitations...

Only root UID/GID maps for user namespaces
No seccomp syscall filtering (no shell command for this)

But, on the plus side:
Built using “simple” shell commands; and
Provides a fair approximation of the isolation of a Docker
container

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 6 / 87

Building a container with shell commands

We’ll use a few standard commands:
unshare(1), mount(8), pivot_root(8)

Each of which is a layer on a system call of the same name

And we’ll simplify things by using busybox(1)
Emulates core functionality of ≈400 shell commands
We can avoid copying many individual binaries into our
container filesystem
Statically linked!

No need to copy shared library dependencies into filesystem

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 7 / 87

Building a container with shell commands

We’ll automate much of the set-up using some scripts
create_lowerfs.sh: constructs (lower layer of)
container filesystem (FS)

Creates a suitable set of directories that should appear
under a root FS, and places busybox in /bin

consh_setup.sh: initial set-up of container
Mount container FS; create a cgroup; launch container init
process (a shell) in a set of new namespaces

consh_post_setup.sh: (automatically) launched in init
shell to complete the container setup

Switch to container root FS; mount a set of
pseudo-filesystems; create some devices; set host name

Here goes...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 8 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

The container root filesystem

A container needs a root filesystem (FS)
That FS should be private to the container

So that FS changes don’t have an effect outside container
Each container will have some files that are unique to it
But, much of FS tree is the same across all containers

E.g., each container has a /bin, containing same binaries

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 10 / 87

How do we efficiently provide a container filesystem?

If each container image stored copies of all files:
Disk space would be wasted

Because many files are same across all containers
Container start-up would be slow

Because of need to copy all of the files to create image at
container start-up

These problems can be solved with a union mount

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 11 / 87

Union mounts

A union mount
Combines contents of multiple directories (“layers”)
Provides a merged view of those layers

Merged view is taken from:
One or more read-only lower layers
A read-write upper layer that contains the differences
from combined lower layers
If a file with same name appears in multiple layers, merged
view shows file from uppermost layer

From a container perspective:
Lower layer(s) contain FS content shared by all containers
Upper layer contains FS content that is private to container

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 12 / 87

OverlayFS

In Docker and Podman, union mounts are provided using
OverlayFS

https://docs.kernel.org/filesystems/overlayfs.html

https://wiki.archlinux.org/title/Overlay_filesystem
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

There are other possibilities, including:
Btrfs

UnionFS, aufs (both older)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 13 / 87

https://docs.kernel.org/filesystems/overlayfs.html
https://wiki.archlinux.org/title/Overlay_filesystem
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

OverlayFS

mount -t overlay overlay ./merged \
-o lowerdir=./lower1:./lower2,upperdir=./upper,workdir=./work

Creates overlay FS mount at “merged” that combines two
lower layers (lower1, lower2) and an upper layer (upper)
workdir is a directory used internally by OverlayFS

Used internally to prepare files before they are atomically
switched to upperdir [*]
Must be empty directory on same FS as upperdir

[*] E.g., consider how this must be implemented: echo >> file-in-lower-layer
While doing operations in OverlayFS, try watching workdir (from outside container):
sudo inotifywait -m -r –format '%:e %f' work

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 14 / 87

OverlayFS

mount -t overlay overlay ./merged \
-o lowerdir=./lower1:./lower2,upperdir=./upper,workdir=./work

all all_low lower_2lower2
(read-only)

all all_low dir_1 hidden
lower1

(read-only)

all *---*
upper

(read-write)

all all_low dir_1 lower_2merged

Read-write upper layer is “diff” applied to lower layers
Diff may include “whiteouts” to represent deletion of a file
from a lower layer (e.g., hidden above)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 15 / 87

Constructing the root filesystem

To create the container FS, we’ll use a union mount
constructed with OverlayFS, with two layers:

Lower layer containing a base image of files that are
common to all containers
Upper layer containing the files that are unique
to/modified in a container instance

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 16 / 87

Constructing the root filesystem

We’ll build lower layer with a script:
create_lowerfs.sh <dir>

<dir> is directory where base image is to be created

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 17 / 87

consh/create_lowerfs.sh

mkdir $1
cd $1
mkdir bin dev etc home proc root sys tmp usr var

cd bin
cp $(which busybox) .
$PWD/busybox --install .

Create a reasonable set of directories that should appear in a
root FS

(We won’t actually populate all of those directories)
Prepopulate bin with binaries to be used inside container:

Copy busybox into bin directory
$ which busybox
/usr/sbin/busybox

Use busybox --install to create all of the associated links
After this step, there will be ≈400 links in bin

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 18 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

A container provides an illusion

A container provides an illusion for the processes inside:
That the processes are in a “mini-system”: a world of their
own and no other processes exist on the system

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 20 / 87

A container provides an illusion

To support the illusion, each container should have:
Its own set of mounted filesystems
Its own hostname
Its own network infrastructure

E.g., own virtual NW devices, own socket port numbers
A private set of PIDs

PIDs of container should not be visible outside
Allows each container to have its own init (PID 1)

Outside PIDs shouldn’t be visible inside container
The concept of “superuser inside the container”

I.e., processes that have privilege inside the container, but
not outside

And so on...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 21 / 87

Implementing the illusion: namespaces

The container illusion of “a world of their own” is primarily
created via use of namespaces (NSs)
A NS provides a virtual instance of some global resource
that is private to a group of processes

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 22 / 87

Implementing the illusion: namespaces

There are various types of NS, including:
PID NSs: make PIDs private to container; hide outside
PIDs

Each container can have its own PID 1!
Mount NSs: provide a private set of mounts

Each container can have its own set of mounted filesystems

UTS NSs: allow each container to have its own hostname
Network NSs: provide a private instance of NW
infrastructure (devices, routing rules, socket port #s, etc.)

Each container can have its own (virtual) NW device that
provides connectivity to outside world

For our container, we’ll create one instance of each NS type

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 23 / 87

Implementing the illusion: superuser

Concept of superuser-in-a-container is provided via user
NSs + capabilities
Capabilities break power of superuser into (mostly) small
pieces

Currently, 41 different capabilities exist
E.g., CAP_KILL, send signals to arbitrary processes;
CAP_SETUID, make arbitrary changes to process’s UIDs

Traditional superuser == process with all capabilities
We’ll create a new user NS for our container

Kernel automatically grants all capabilities to first
process in new user NS

I.e., superuser powers inside container

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 24 / 87

Creating namespaces

At the shell level, a NS is created using unshare(1)
At kernel level, NSs are created using unshare(2) or
clone(2) syscall

Example:
$ unshare --user --pid --fork sh -c 'echo "My PID is $$!"'
My PID is 1!

Create new user and PID NSs, and run a new shell that
displays its PID

First process in a new PID NS gets PID 1

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 25 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Limiting container resource usage

Isolation also means limiting container’s use of resources
For example, we want to:

Prevent a container from overwhelming system with
excessive resource demands
Be assured that other containers can’t overwhelm
system

So that our container obtains reasonable share of resources

Limit access to resources such as devices
Measure resource consumption of container

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 27 / 87

Control groups (cgroups)

On Linux, resource isolation/limitation is done via control
cgroups (cgroups)

Key point: resource allocation is specified at level of group
of processes

Older ulimit mechanism sets per-process limits

Interface is a pseudo-filesystem (FS)
Mounted at /sys/fs/cgroup
Cgroup manipulation is done using FS commands

Creating a cgroup == creating directory on FS
Limits are set by writing values into files inside cgroup
directory

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 28 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

consh/consh_setup.sh

We’ll use a script to do the container set up:
consh_setup.sh [options] <lower-dir> <overlay-dir>

Options: -c <cgroup-path> -h <hostname>

<lower-dir> : directory to be used as lower layer in union
mount used for container root FS
<overlay-dir> : location (pathname) in which to create
other pieces needed for union mount

I.e., upper, work, and the mount point, merged

<cgroup-path> : [optional] pathname of cgroup into which
container should be placed
<hostname> : hostname to use in container
Script places these values into shell variables: lower,
ovly_dir, cgroup (possibly empty), and host

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 30 / 87

consh/consh_setup.sh

mkdir -p $ovly_dir/upper $ovly_dir/work
mkdir -p $ovly_dir/merged

sudo mount -t overlay -o lowerdir=$lower \
-o upperdir=$ovly_dir/upper \
-o workdir=$ovly_dir/work \

overlay $ovly_dir/merged
cd $ovly_dir

Create directories used in the OverlayFS union mount
upper will be upper layer of union mount
work is a directory used internally by OverlayFS

Create mount point (merged)
Create union mount at “merged”

$lower is directory we created with create_lowerfs.sh

Change current directory to $ovly_dir
(After container terminates, we need to manually remove the mount and the directories)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 31 / 87

consh/consh_setup.sh

manifest=merged/MANIFEST
echo "Created at: $(date)" > $manifest
echo "Creator UID: $(id -u)" >> $manifest
echo "Creator PID: $$" >> $manifest

As a demo, create a file that is private to this container
(File is created in upper layer of the union mount)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 32 / 87

consh/consh_setup.sh

if test "X$cgroup" != "X"; then
echo "Using cgroup: $cgroup" >> $manifest

cgpath="/sys/fs/cgroup/$cgroup"
sudo mkdir -p $cgpath

sudo sh -c "echo $$ > $cgpath/cgroup.procs"
...

fi

If a cgroup pathname was specified:
Create cgroup
Move this shell into cgroup

Children of this shell will also be in this cgroup

...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 33 / 87

consh/consh_setup.sh

if test "X$cgroup" != "X"; then
...
sudo sh -c 'cd '$cgpath'

dlgt_files=$(ls $(cat /sys/kernel/cgroup/delegate) 2> /dev/null)
chown '$(id -u):$(id -g)' . $dlgt_files'

fi

If a cgroup pathname was specified:
...
Delegate the cgroup to the user invoking this script

Delegation == changing ownership of cgroup directory and
certain files inside that directory
Allows (unprivileged) user to manage subhierarchy (e.g,
create child cgroups)
/sys/kernel/cgroup/delegate provides a list of files
whose ownership must be changed (if they exist)
(Not all of those files might exist; hence use of ls above)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 34 / 87

consh/consh_setup.sh

exec env -i HOME="/root" PATH="/usr/sbin:/usr/bin:/sbin:/bin" \
HOSTNAME="$host" \
ENV="$(dirname $0)/consh_post_setup.sh" \

unshare --user --map-root-user --pid --fork \
--mount --net --ipc --uts --cgroup \

busybox sh

exec : replace the shell with the env command
Rather than executing in a child process

Reduces number of excess processes in container’s cgroup

Use env to clear environment (–i) and set a minimal set of
environment variables

Use of ENV is explained shortly
env in turn does an exec to replace itself with unshare

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 35 / 87

consh/consh_setup.sh

exec env -i HOME="/root" PATH="/usr/sbin:/usr/bin:/sbin:/bin" \
HOSTNAME="$host" \
ENV="$(dirname $0)/consh_post_setup.sh" \

unshare --user --map-root-user --pid --fork \
--mount --net --ipc --uts --cgroup \

busybox sh

Use unshare to create child process that runs in new
NSs
--user --map-root-user : create a user NS with root mappings

This user NS will own all of the other NSs created here
(Recent (2022) versions of unshare have --map-users and --map-groups, to
allow creation of more complex mappings)

--pid --fork : create a PID NS and a child process
The child process will have PID 1 in new PID NS

Remaining options specify creation of the other NS types

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 36 / 87

consh/consh_setup.sh

exec env -i HOME="/root" PATH="/usr/sbin:/usr/bin:/sbin:/bin" \
HOSTNAME="$host" \
ENV="$(dirname $0)/consh_post_setup.sh" \

unshare --user --map-root-user --pid --fork \
--mount --net --ipc --uts --cgroup \

busybox sh

Run a shell in child process created by unshare
Run a busybox shell, in order to have a shell that is the
same as that in /bin of the container FS

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 37 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Performing initialization steps inside the container

After the child process has been created, there are still some
set-up steps to be done
We perform those steps in another script

consh/consh_post_setup.sh

Execution of that script is automated using the ENV
environment variable

If ENV is defined, then a newly launched shell will execute
the script it points to on start-up

⇒ Child shell launched by unshare automatically executes
consh/consh_post_set.sh

As its first step, that script unsets ENV, so the script won’t
be executed by future shells run within container:
unset ENV

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 39 / 87

Setting up the container root FS: pivot_root(8)

Our “container” shell inherited the list of mounts from the
initial mount NS
We want to drop those mounts, and use our overlay
mount as the root FS
Can do this with pivot_root(8) command:
pivot_root new_root put_old

Moves existing root mount of mount NS (and all
descendant mounts) to put_old
Makes new_root the new root mount
Later, we will unmount old root FS

(pivot_root(8) is built on pivot_root(2) syscall)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 40 / 87

The effect of pivot_root(8)

/

Before

dev new_root

put_old

proc

inode 2

inode 999

/

After

put_old

dev proc

inode 999

inode 2

mount point

directory

new_root is made the new root mount
Old root mount (along with all descendant mounts) is
shifted to put_old

Background notes: the root directory on a FS is always at inode 2;
here, hypothetically, new_root has inode number 999

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 41 / 87

pivot_root(8) rules

There are many rules governing use of pivot_root...
(See pivot_root(2) manual page)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 42 / 87

pivot_root(8) rules

new_root and put_old must be directories and must not be
on same mount as the current root mount
put_old must be at or underneath new_root

This allows us to subsequently unmount old root FS
new_root must be a path for an existing mount

(pivot_root() is essentially shuffling entries in mount list, so
new_root must be a mount)
We can ensure new_root is a mount by bind mounting that
path onto itself

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 43 / 87

pivot_root(8) rules

To ensure that pivot_root(8) does not propagate changes to
any other mount NS:

(Propagation is a mechanism whereby mounts in one NS
automatically propagate to other NSs; we don’t want this)
Propagation type of parent mount of new_root and parent
of current root must not be “shared”
If put_old is an existing mount, its propagation type must
not be “shared”

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 44 / 87

consh/consh_post_setup.sh

Again, we’ll make a script, consh/consh_post_setup.sh:
mount --make-rprivate /

mount --bind merged merged
mkdir merged/oldrootfs

pivot_root merged merged/oldrootfs

cd /

Ensure that no mounts have shared propagation
Ensure that new root (merged) is a mount point
Create a directory under new root (oldrootfs), so that
current root can be moved there
Pivot the root directory
At this point, the root current directory of our shell is
outside (above) the new root directory; fix that
©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 45 / 87

consh/consh_post_setup.sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys
mount -t cgroup2 cgroup2 /sys/fs/cgroup

mkdir -p /dev/mqueue
mount -t mqueue mqueue /dev/mqueue

Mount /sys + some NS-related pseudofilesystems
So that we have mounts that are consistent with PID, IPC,
and cgroup NSs of our container

In particular, /proc mount ensures that ps(1) works!

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 46 / 87

consh/consh_post_setup.sh

for name in full null random tty urandom zero; do
touch /dev/$name
mount --bind oldrootfs/dev/$name /dev/$name

done

Add some useful devices, by bind mounting to devices
under old root FS

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 47 / 87

consh/consh_post_setup.sh

Unmount old root mount:
umount -l oldrootfs
rmdir oldrootfs # Remove now-unused mount point

This does a lazy unmount of the old root, and all of its
descendant mounts

See description of MNT_DETACH in umount(2)
For obscure reasons, must be done after mounting /proc

https://lore.kernel.org/lkml/87tvsrjai0.fsf@xmission.com/T/

Set hostname using value passed via environment variable:
hostname $HOSTNAME

And that’s it!

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 48 / 87

https://lore.kernel.org/lkml/87tvsrjai0.fsf@xmission.com/T/

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Demo

Let’s use our scripts to create a container
We do the following as an unprivileged user:
$ id
uid=1000(mtk) gid=1000(mtk) groups=1000(mtk),10(wheel)

Create a directory for our work; inside that directory we
create the base image for the union mount:
$ cd consh
$ mkdir demo
$ cd demo
$../create_lowerfs.sh lower

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 50 / 87

Demo

Start the container, creating overlay mount at ./merged:
$../consh_setup.sh -c consh_cgrp -h tekapo lower .

We are now running a shell in our “container”
The shell is in the cgroup consh_cgrp

Because we’ll be hopping between shells, make prompt of
this shell more distinctive:
/ # PS1="bbsh# " # Change the shell prompt
bbsh#

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 51 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

PID namespaces

From inside container, show PID of shell; use ps:
bbsh# echo $$
1
bbsh# ps ax # List all processes
PID USER TIME COMMAND

1 0 0:00 busybox sh
15 0 0:00 ps

Shell was first process in a new PID NS, and so got PID 1
Processes outside the container are not visible

From outside container, show PID of shell in initial PID NS:
$ ps -C busybox

PID TTY TIME CMD
26926 pts/3 00:00:00 busybox

What’s going on?

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 53 / 87

PID namespaces

PID NSs exist in hierarchies
Each PID NS has a parent, which has a parent... back to
initial PID NS

A process that is member of a PID NS is also visible (i.e.,
has a PID in) in all ancestor NSs

/proc/PID/status shows shell’s PID in each PID NS:
$ grep NStgid /proc/26926/status
NStgid: 26926 1

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 54 / 87

Mount namespaces

From outside the container (because busybox doesn’t
provide findmnt), view the mount tree of the container:
$ findmnt -o 'target,source,fstype' -N 26926
TARGET SOURCE FSTYPE
/ overlay overlay

/dev tmpfs tmpfs
/dev/mqueue mqueue mqueue

/sys sysfs sysfs
/sys/fs/cgroup cgroup2[...] cgroup2

/proc proc proc

This is a different (and smaller) set of mounts than is seen
outside the container
The container has its own mount NS

(–N <pid> == show mounts in mount NS of <pid>
rather than /proc/self/mountinfo)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 55 / 87

User namespaces

From inside container, show credentials of shell:
bbsh# id
uid=0 gid=0 groups=65534,65534,65534,0

The supplementary groups are messy, but it’s the best we
can do from a script

(One of the untidy corners of our container...)

From outside the container, show credentials of the shell:
$ grep '[UG]id' /proc/26926/status
Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000

UID 1000 outside container was mapped to 0 inside via
creation of a UID map for container’s user NS:
$ cat /proc/26926/uid_map

0 1000 1

Mapping was created by unshare --map-root-user
©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 56 / 87

UTS namespaces

From inside container, view the hostname, and change it:
bbsh# hostname
tekapo
bbsh# hostname langwied
bbsh# hostname
langwied

Container is in a new UTS NS, so user can change
hostname

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 57 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Superuser inside a container

In previous demo, we changed the container’s hostname
How is that possible?

(Since privilege is required)
And could a process inside container do superuser-y things
outside the container?

(We certainly hope not, since unprivileged users can create
containers)

How can a process be privileged inside a container
while being unprivileged outside the container?

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 59 / 87

Namespace relationships

Some things we need to know:
Each non-user NS governs some type of global resource

Mount NS: mounts
UTS NS: hostname
Network NS: NW resources
etc.

Each non-user NS is owned by a user NS
Ownership is established when non-user NS is created

When our container was created, new instances of each NS
type were created, including a new user NS
Because all NSs were created at same time, kernel made
the new user NS the owner of the other new NSs

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 60 / 87

Capabilities and superuser powers inside a container

Kernel (automatically) grants all capabilities to first
process in a new user NS

All capabilities == superuser powers
Show capabilities of our container shell:
bbsh# grep -E 'Cap(Prm|Eff)' /proc/$$/status
CapPrm: 000001ffffffffff
CapEff: 000001ffffffffff

All permitted and effective capabilities...
“=ep” as would be shown by getpcaps(8)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 61 / 87

What does it mean to be superuser inside a NS?

But those superuser powers have effect only inside container,
because...
Root power in a user NS == privilege over resources
governed by non-user NSs owned by the user NS

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 62 / 87

Containers and namespaces
Initial

user NS

Initial
UTS NSChild

user NS

Initial
PID NS

Initial
mnt NS

Initial
NW NS

UTS NS
(hostname)

PID NS mnt NS
(mnt list)

NW NS
(NW infra.)

init process
(PID 1)

caps: =ep
Container

is child of
(a user NS)

is owned by

(a user NS)

is member of
(a NS)

Not all
NSs are
shown

“Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS

And does not have privilege in outside user NS
(E.g., can’t change mounts seen by processes outside container)

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 63 / 87

Namespace relationships

From a shell outside container, use my namespaces_of.go to
compare (some) NSs of that shell with NSs of container shell:
$ echo $$
28736
$ sudo go run namespaces/namespaces_of.go 28736 26926
user {4 4026531837} <UID: 0> # Initial user NS

[28736]
cgroup {4 4026531835}

[28736]
ipc {4 4026531839}

[28736]
mnt {4 4026531841}

[28736]
[...]
user {4 4026534280} <UID: 1000> # User NS of the container

[26926]
cgroup {4 4026534285} # Indentation indicates ownership

[26926]
ipc {4 4026534283}

[26926]
mnt {4 4026534281}

[26926]
[...]

The container has its own user NS, which owns other NSs
©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 64 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Demo: cgroups

From a shell outside the container, let’s look at the
container’s cgroup:
$ cat /sys/fs/cgroup/consh_cgrp/cgroup.procs
26911
26926
$ ps 26911 26926

PID TTY STAT TIME COMMAND
26911 pts/1 S 0:00 unshare --user --map-root --pid ...
26926 pts/1 S+ 0:00 busybox sh # Our container shell

Another small untidiness: unshare process shouldn’t be in
the cgroup; we can manually move it out if we care

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 66 / 87

Demo: cgroups

Inside the container, show cgroup membership of the shell:
bbsh# cat /proc/1/cgroup
0::/

Shell is in cgroup consh_cgrp...
But remount of cgroup2 FS ensured a correctly virtualized
path when looking from inside container

I.e., in cgroup NS of our container, consh_cgrp is the root
cgroup

How does cgroup membership of the container shell look
from a shell in the outside world?
$ cat /proc/26926/cgroup
0::/consh_cgrp

This (different) path is consistent with the fact that we are
looking from a different cgroup NS

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 67 / 87

Demo: cgroup delegation

Let’s look at cgroup directory and some files inside to see
the effect of delegation:
$ ls -ld /sys/fs/cgroup/consh_cgrp
drwxr-xr-x. 3 mtk mtk 0 Feb 1 15:20 /sys/fs/cgroup/consh_cgrp
$ ls -l /sys/fs/cgroup/consh_cgrp
total 0
-r--r--r--. 1 root root 0 Feb 1 15:19 cgroup.controllers
-r--r--r--. 1 root root 0 Feb 1 00:11 cgroup.events
...
-rw-r--r--. 1 mtk mtk 0 Feb 3 10:38 cgroup.procs
-r--r--r--. 1 root root 0 Feb 1 15:19 cgroup.stat
-rw-r--r--. 1 mtk mtk 0 Feb 1 15:19 cgroup.subtree_control
-rw-r--r--. 1 mtk mtk 0 Feb 1 15:19 cgroup.threads
-rw-r--r--. 1 root root 0 Feb 1 15:19 cgroup.type
...

Cgroups created under consh_cgrp will also be owned by
mtk

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 68 / 87

Demo: setting cgroup limits

From a shell outside container, set a CPU limit for cgroup:
$ sudo sh -c 'echo 5000 10000 > /sys/fs/cgroup/consh_cgrp/cpu.max'

50% of one CPU
And copy a (statically linked) program that burns CPU into
the container FS:
$ cd consh/demo
$ cp ../../timers/cpu_burner upper/

From inside container, run that program:
bbsh# /cpu_burner
[17] %CPU = 51.36
[17] %CPU = 50.00
[17] %CPU = 50.00
...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 69 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

Demo: networking

Let’s use a virtual NW device to achieve NW connectivity
into our container
All steps are done using the standard ip netns command

See also the script, consh/consh_nw_setup.sh

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 71 / 87

ip netns

One hurdle: normally, we create a NW NS using
ip netns add <name>

Creates a bind mount for NS in /var/run/netns

That mount is used in subsequent ip netns commands
in order to reach the NS

Our container’s NW NS has already been created, but we
still need the bind mount for our ip netns commands
⇒ we create the bind mount manually from a shell outside
the container:
$ sudo mkdir -p /var/run/netns # Ensure directory exists
$ sudo touch /var/run/netns/consh # Create the mount point
$ sudo mount --bind /proc/26926/ns/net /var/run/netns/consh

Our bind mount is named consh

/proc/26926/ns/net is NW NS of our container shell

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 72 / 87

Setting up network infrastructure

From a root shell outside the container, we now set up some NW
infrastructure:

Create a pair of connected virtual Ethernet (veth) devices:
sudo bash
ip link add veth0 type veth peer name veth1

We named the two devices veth0 and veth1

Move the veth1 device into our container:
ip link set veth1 netns consh

Assign IP addresses to both veth devices & bring them up:
ip address add 10.0.0.1/24 dev veth0
ip link set veth0 up
ip netns exec consh ip address add 10.0.0.2/24 dev veth1
ip netns exec consh ip link set veth1 up

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 73 / 87

Setting up network infrastructure

Returning to our container shell:
Show that the veth1 device is present in the container:
bbsh# ip link show veth1
282: veth1@if283: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> ...

link/ether 2e:c2:13:c5:4e:b8 brd ff:ff:ff:ff:ff:ff

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 74 / 87

Demonstrating network connectivity

How can we easily fire up a NW server inside the container?
busybox does Netcat (¡Genial!)

Inside our container, start a listening server on port 50000:
bbsh# nc -l -p 50000 -e sh -c \

's=; while true; do s=x$s; echo $s; sleep 1; done'

After accepting a connection, server script sends strings of
ever-increasing length

From a shell outside the container, we connect to the server
and see:
nc 10.0.0.2 50000
x
xx
xxx
xxxx
...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 75 / 87

Outline

1 Building a container from the shell 4
2 Constructing the container filesystem 9
3 Isolating the container: namespaces 19
4 Isolating the container: cgroups 26
5 Set-up and container start-up 29
6 Container initialization after start-up 38
7 Demo: starting up the container 49
8 Demo: namespaces inside the container 52
9 Superuser inside a container 58
10 Demo: cgroups inside the container 65
11 Demo: networking 70
12 One more thing 76

If this is a “decent” container,
we should be able to do

one more thing...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 77 / 87

Can we create a container
inside a container?

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 78 / 87

A container inside a container

What are the hurdles?
The busybox unshare applet doesn’t support --cgroup

⇒ We’ll use a statically linked version of the standard
unshare program provided by util-linux

consh_setup.sh uses sudo, but busybox has no sudo applet
But, we don’t need sudo because container shell already has
all capabilities
⇒ We’ll edit the script

We need a union mount for inner container, but upper layer
in OverlayFS can’t itself be an OverlayFS mount

IOW: we can’t use FS of outer container in upper layer of
inner container’s FS
⇒ Mount a new tmpfs + create union mount layers there

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 79 / 87

Creating the outer container

First, we create the outer container:
$ cd consh
$ mkdir demo
$ cd demo
$../create_lowerfs.sh lower
$../consh_setup.sh -c cgrp -h tekapo lower .
/ # PS1="bbsh# " # Change the shell prompt
bbsh#

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 80 / 87

Preparations for the inner container

Now we need to copy the files into outer container that will
be used to set up inner container...
From a shell outside the container, we copy our scripts into
the container FS:
$ cd consh
$ cp *.sh demo/upper/

And edit the scripts to remove the sudo strings:
$ sed -i 's/sudo //' demo/upper/*.sh

And copy in a statically linked version of the standard
unshare command:
$ rm demo/lower/bin/unshare

Steps to build unshare.static omitted
$ cp /some/path/util-linux/unshare.static demo/lower/bin/unshare

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 81 / 87

Starting the inner container

Returning to our outer container, we mount a tmpfs FS
where we will create the components of the union mount for
the inner container:
bbsh# mkdir demo_inner
bbsh# mount -t tmpfs tmpfs demo_inner

Create the lower layer for the union mount:
bbsh# cd demo_inner
bbsh# ../create_lowerfs.sh lower

Start the inner container:
bbsh# ../consh_setup.sh -c cgrp_2 -h pukaki lower .
/ #

“/ #” is prompt of busybox shell in inner container...

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 82 / 87

Examining the inner container

Start a sleep process in the inner container:
/ # /bin/sleep 1000 # Full path to avoid 'sleep' built-in

We use absolute pathname to avoid use of sleep built-in
command (which would not create separate process)

From a shell in the initial NS, obtain PID of sleep :
$ pidof sleep
69884

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 83 / 87

Examining the inner container

Let’s use my namespaces/namespaces_of.go to compare
some NSs of a shell in initial NSs with NSs of sleep :
$ go run namespaces_of.go --namespaces=user,cgroup,pid,uts $$ 69884
user {4 4026531837} <UID: 0> # Initial user NS

[56734]
cgroup {4 4026531835}

[56734]
pid {4 4026531836}

[56734]
uts {4 4026531838}

[56734]
user {4 4026534072} <UID: 1000> # User NS of outer container

user {4 4026532574} <UID: 1000> # User NS of inner container
[69884]

cgroup {4 4026534004}
[69884]

pid {4 4026534003}
[69884]

uts {4 4026534001}
[69884]

sleep is in grandchild user NS that owns various other NSs
sleep is also a member of those other NSs

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 84 / 87

Examining the inner container

Display PID of sleep in all PID NSs where it is present:
$ grep NStgid /proc/69884/status
NStgid: 69884 54 17

Three PIDs ⇒ sleep is in a grandchild PID NS
Verify by using my program to examine PID NS hierarchy:
$ sudo go run namespaces_of.go --pidns 69884
pid {4 4026531836} # Initial PID NS

pid {4 4026535236} # PID NS of outer container
pid {4 4026534583} # PID NS of inner container

[69884]

Display cgroup membership of sleep :
$ cat /proc/69884/cgroup
0::/cgrp/cgrp_2

It is in a child cgroup of the outer container’s cgroup

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 85 / 87

Sure does look like a container
inside a container!

©2025, Michael Kerrisk @mkerrisk Linux containers in (less than) 100 lines of shell 86 / 87

Thanks!
Michael Kerrisk, Trainer and Consultant

http://man7.org/training/

mtk@man7.org @mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

http://man7.org/training/
http://man7.org/conf/
http://man7.org/tlpi/code/

	Linux containers in (less than) 100 lines of shell 1
	Building a container from the shell 4
	Constructing the container filesystem 9
	Isolating the container: namespaces 19
	Isolating the container: cgroups 26
	Set-up and container start-up 29
	Container initialization after start-up 38
	Demo: starting up the container 49
	Demo: namespaces inside the container 52
	Superuser inside a container 58
	Demo: cgroups inside the container 65
	Demo: networking 70
	One more thing 76

