NDC Security 2025

Linux containers
in (less than) 100 lines of shell

Michael Kerrisk, man7.org © 2025
22 January 2025, Oslo, Norway

mtk@man7.org

Outline

CO~NO O~ WwWwpN

9

Building a container from the shell
Constructing the container filesystem
Isolating the container: namespaces
Isolating the container: cgroups

Set-up and container start-up
Container initialization after start-up
Demo: starting up the container

Demo: namespaces inside the container
Superuser inside a container

10 Demo: cgroups inside the container
11 Demo: networking
12 One more thing

Who?

@ Linux man-pages project
@ https://www.kernel.org/doc/man-pages/
@ Manual pages pages documenting syscalls and C library

@ Contributor since 2000
o Maintainer 2004-2020
o Comaintainer 2020-2021

@ | wrote a book THE LINUX
. . . PROGRAMMING
@ Trainer/writer/engineer INTERFACE
http://man7.org/training/ A sy g stk

MICHAEL KERRISK

@ mtk@man7.org, Omkerrisk

man7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

https://www.kernel.org/doc/man-pages/
http://man7.org/training/

Outline

1 Building a container from the shell

One day | wondered...

Can | create a (decent) container
with shell commands?

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 5 /87

Building a container with shell commands

@ So, it is possible (opinions on “decent” might differ...)
o (And can be automated in a few scripts)
@ It's not a perfect container

e Some untidy corners
o Some set-up steps are omitted or need to be done manually

o E.g., defining cgroup settings

o And other limitations...
@ Only root UID/GID maps for user namespaces

o No seccomp syscall filtering (no shell command for this)

@ But, on the plus side:
o Built using “simple” shell commands; and
e Provides a fair approximation of the isolation of a Docker

container

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 6 /87

Building a container with shell commands

o We'll use a few standard commands:
o unshare(1), mount(8), pivot_root(8)
e Each of which is a layer on a system call of the same name
e And we'll simplify things by using busybox(1)
o Emulates core functionality of =400 shell commands
o We can avoid copying many individual binaries into our
container filesystem

o Statically linked!
@ No need to copy shared library dependencies into filesystem

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 7 /87

Building a container with shell commands

o We'll automate much of the set-up using some scripts

o create_lowerfs.sh: constructs (lower layer of)
container filesystem (FS)

o Creates a suitable set of directories that should appear
under a root FS, and places busybox in /bin

o consh_setup.sh: initial set-up of container
@ Mount container FS; create a cgroup; launch container init
process (a shell) in a set of new namespaces

o consh_post_setup.sh: (automatically) launched in init
shell to complete the container setup

@ Switch to container root FS; mount a set of
pseudo-filesystems; create some devices; set host name

@ Here goes...

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 8 /87

Outline

2 Constructing the container filesystem

The container root filesystem

@ A container needs a root filesystem (FS)

@ That FS should be private to the container
e So that FS changes don't have an effect outside container

@ Each container will have some files that are unique to it

@ But, much of FS tree is the same across all containers
o E.g., each container has a /bin, containing same binaries

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 10 / 87

How do we efficiently provide a container filesystem?

o If each container image stored copies of all files:
o Disk space would be wasted
o Because many files are same across all containers
o Container start-up would be slow
o Because of need to copy all of the files to create image at
container start-up

@ These problems can be solved with a union mount

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 11 /87

Union mounts

@ A union mount
o Combines contents of multiple directories (“layers")

o Provides a merged view of those layers

@ Merged view is taken from:
o One or more read-only lower layers

o A read-write upper layer that contains the differences
from combined lower layers

o If a file with same name appears in multiple layers, merged
view shows file from uppermost layer

@ From a container perspective:
o Lower layer(s) contain FS content shared by all containers

o Upper layer contains FS content that is private to container

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 12 / 87

OverlayFS

@ In Docker and Podman, union mounts are provided using
OverlayFS
@ https://docs.kernel.org/filesystems/overlayfs.html
o https://wiki.archlinux.org/title/Overlay_filesystem

@ https://docs.docker.com/storage/storagedriver/overlayfs-driver/

@ There are other possibilities, including:
@ Bitrfs

@ UnionFS, aufs (both older)

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 13 / 87

https://docs.kernel.org/filesystems/overlayfs.html
https://wiki.archlinux.org/title/Overlay_filesystem
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

OverlayFS

mount -t overlay overlay ./merged \
-o lowerdir=./lowerl:./lower2,upperdir=./upper,workdir=./work

o Creates overlay FS mount at “merged” that combines two
lower layers (Lower1, lower2) and an upper layer (upper)

@ workdir is a directory used internally by OverlayFS

o Used internally to prepare files before they are atomically
switched to upperdir [*]

e Must be empty directory on same FS as upperdir

[*] E.g., consider how this must be implemented: echo >> file-in-lower-layer

@ While doing operations in OverlayFS, try watching workdir (from outside container):
sudo inotifywait -m -r -format 'J:e %f' work

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 14 / 87

OverlayFS

mount -t overlay overlay ./merged \

-o lowerdir=./lowerl:./lower2,upperdir=./upper,workdir=./work

[; all 3 all_low . podir 1 ' lower_2 l]
A A A —
upper . ; ; E
(read-write) [all ! ! ' }
: T A T
(rleoag_i::;) U all | | all low | | dir 1 |] hidden |]
lower2 :
(read-only) U all ‘ ‘ all low ‘]

@ Read-write upper layer is “diff” applied to lower layers

man?7.org

o Diff may include "whiteouts” to represent deletion of a file
from a lower layer (e.g., hidden above)

©2025, Michael Kerrisk

©mkerrisk Linux containers in (less than) 100 lines of shell

15 / 87

Constructing the root filesystem

@ To create the container FS, we'll use a union mount
constructed with OverlayFS, with two layers:
o Lower layer containing a base image of files that are
common to all containers

o Upper layer containing the files that are unique
to/modified in a container instance

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

16 / 87

Constructing the root filesystem

o We'll build lower layer with a script:

‘create lowerfs.sh <dir>

e <dir> is directory where base image is to be created

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 17 / 87

consh/create lowerfs.sh

mkdir $1
cd $1
mkdir bin dev etc home proc root sys tmp usr var

cd bin
cp $(which busybox)
$PWD/busybox --install .

o Create a reasonable set of directories that should appear in a
root FS

o (We won't actually populate all of those directories)

@ Prepopulate bin with binaries to be used inside container:
o Copy busybox into bin directory

$ which busybox
/usr/sbin/busybox

o Use busybox --install to create all of the associated links
o After this step, there will be =400 links in bin

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 18 / 87

Outline

3 lIsolating the container: namespaces

19

A container provides an illusion

@ A container provides an illusion for the processes inside:

e That the processes are in a “mini-system”: a world of their
own and no other processes exist on the system

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 20 / 87

A container provides an illusion

To support the illusion, each container should have:
o Its own set of mounted filesystems
o Its own hostname
o Its own network infrastructure
o E.g., own virtual NW devices, own socket port numbers

e A private set of PIDs
o PIDs of container should not be visible outside
o Allows each container to have its own init (PID 1)

o Outside PIDs shouldn't be visible inside container

@ The concept of “superuser inside the container”

o l.e., processes that have privilege inside the container, but
not outside

@ And so on...

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 21 /87

Implementing the illusion: namespaces

@ The container illusion of “a world of their own” is primarily
created via use of namespaces (NSs)

@ A NS provides a virtual instance of some global resource
that is private to a group of processes

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 22 /87

Implementing the illusion: namespaces

@ There are various types of NS, including:

o PID NSs: make PIDs private to container; hide outside
PIDs

@ Each container can have its own PID 1!
o Mount NSs: provide a private set of mounts

o Each container can have its own set of mounted filesystems
o UTS NSs: allow each container to have its own hostname

o Network NSs: provide a private instance of NW
infrastructure (devices, routing rules, socket port #s, etc.)

e Each container can have its own (virtual) NW device that
provides connectivity to outside world

e For our container, we'll create one instance of each NS type

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 23 /87

Implementing the illusion: superuser

@ Concept of superuser-in-a-container is provided via user
NSs + capabilities
o Capabilities break power of superuser into (mostly) small
pieces
o Currently, 41 different capabilities exist
o E.g., CAP_KILL, send signals to arbitrary processes;
CAP_SETUID, make arbitrary changes to process's UIDs
o Traditional superuser == process with all capabilities

o We'll create a new user NS for our container

o Kernel automatically grants all capabilities to first
process in new user NS

o l.e., superuser powers inside container

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

24 / 87

Creating namespaces

@ At the shell level, a NS is created using unshare(1)

o At kernel level, NSs are created using unshare(2) or
clone(2) syscall

o Example:

$ unshare --user --pid --fork sh -c 'echo "My PID is $$!"'
My PID is 1!

o Create new user and PID NSs, and run a new shell that
displays its PID
o First process in a new PID NS gets PID 1

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

25 / 87

Outline

4 |solating the container: cgroups

26

Limiting container resource usage

@ Isolation also means limiting container’s use of resources

@ For example, we want to:

o Prevent a container from overwhelming system with
excessive resource demands

o Be assured that other containers can’t overwhelm
system

o So that our container obtains reasonable share of resources
o Limit access to resources such as devices

o Measure resource consumption of container

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 27 /87

Control groups (cgroups)

@ On Linux, resource isolation/limitation is done via control

cgroups (cgroups)

o Key point: resource allocation is specified at level of group

of processes
o Older ulimit mechanism sets per-process limits
o Interface is a pseudo-filesystem (FS)
e Mounted at /sys/fs/cgroup

o Cgroup manipulation is done using FS commands
o Creating a cgroup == creating directory on FS

o Limits are set by writing values into files inside cgroup
directory

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

28 / 87

Outline

5 Set-up and container start-up

29

consh/consh_setup.sh

@ We'll use a script to do the container set up:

consh_setup.sh [options] <lower-dir> <overlay-dir>
Options: -c <cgroup-path> -h <hostname>

o <lower-dir>: directory to be used as lower layer in union
mount used for container root FS

@ <overlay-dir>: location (pathname) in which to create
other pieces needed for union mount

o l.e., upper, work, and the mount point, merged

@ <cgroup-path>: [optional] pathname of cgroup into which
container should be placed

@ <hostname>: hostname to use in container

@ Script places these values into shell variables: /ower,
ovly_dir, cgroup (possibly empty), and host

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 30 /87

consh/consh_setup.sh

mkdir -p $ovly_dir/upper $ovly_dir/work
mkdir -p $ovly_dir/merged

sudo mount -t overlay -o lowerdir=$lower \
-0 upperdir=$ovly_dir/upper \
-o workdir=$ovly_dir/work \

overlay $ovly_dir/merged
cd $ovly_dir

o Create directories used in the OverlayFS union mount

o upper will be upper layer of union mount

e work is a directory used internally by OverlayFS
@ Create mount point (merged)
o Create union mount at “merged”

o $lower is directory we created with create_lowerfs.sh
o Change current directory to $ovly_dir

(After container terminates, we need to manually remove the mount and the directories)
man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 31 /87

consh/consh_setup.sh

manifest=merged/MANIFEST
echo "Created at: $(date)" > $manifest
echo "Creator UID: $(id -u)" >> $manifest
echo "Creator PID: $$" >> $manifest

@ As a demo, create a file that is private to this container
o (File is created in upper layer of the union mount)

man?7.org
©2025, Michael Kerrisk ©mkerrisk

Linux containers in (less than) 100 lines of shell 32 /87

consh/consh_setup.sh

if test "X$cgroup" != "X"; then
echo "Using cgroup: $cgroup" >> $manifest

cgpath="/sys/fs/cgroup/$cgroup"
sudo mkdir -p $cgpath

sudo sh -c "echo $$ > $cgpath/cgroup.procs"

fi

o If a cgroup pathname was specified:
o Create cgroup

e Move this shell into cgroup
@ Children of this shell will also be in this cgroup

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 33 /87

consh/consh_setup.sh

if test "X$cgroup" != "X"; then

sudo sh —c 'cd '$cgpath’
dlgt_files=$(1s $(cat /sys/kernel/cgroup/delegate) 2> /dev/null)
chown '$(id -u):$(id -g)' . $dlgt_files'
fi

o If a cgroup pathname was specified:
o ...
o Delegate the cgroup to the user invoking this script

o Delegation == changing ownership of cgroup directory and
certain files inside that directory

o Allows (unprivileged) user to manage subhierarchy (e.g,
create child cgroups)

o /sys/kernel/cgroup/delegate provides a list of files
whose ownership must be changed (if they exist)
(Not all of those files might exist; hence use of Is above)

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 34 /87

consh/consh_setup.sh

exec env -i HOME="/root" PATH="/usr/sbin:/usr/bin:/sbin:/bin" \
HOSTNAME="$host" \
ENV="$(dirname $0)/consh_post_setup.sh" \
unshare --user --map-root-user --pid --fork \
--mount --net --ipc --uts --cgroup \
busybox sh

o exec: replace the shell with the env command
o Rather than executing in a child process
@ Reduces number of excess processes in container’s cgroup

@ Use env to clear environment (—i) and set a minimal set of
environment variables

o Use of ENV is explained shortly

@ env in turn does an exec to replace itself with unshare

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 35 /87

consh/consh_setup.sh

exec env -i HOME="/root" PATH="/usr/sbin:/usr/bin:/sbin:/bin" \
HOSTNAME="8$host" \
ENV="$(dirname $0)/consh_post_setup.sh" \
unshare --user --map-root-user --pid --fork \
--mount --net --ipc --uts --cgroup \
busybox sh

@ Use unshare to create child process that runs in new
NSs
@ --user --map-root-user: create a user NS with root mappings
o This user NS will own all of the other NSs created here

@ (Recent (2022) versions of unshare have --map-users and --map-groups, to
allow creation of more complex mappings)

@ --pid --fork: create a PID NS and a child process
o The child process will have PID 1 in new PID NS

@ Remaining options specify creation of the other NS types

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 36 / 87

consh/consh_setup.sh

exec env -i HOME="/root" PATH="/usr/sbin:/usr/bin:/sbin:/bin" \
HOSTNAME="$host" \
ENV="$(dirname $0)/consh_post_setup.sh" \
unshare --user --map-root-user --pid --fork \
--mount --net --ipc --uts --cgroup \
busybox sh

@ Run a shell in child process created by unshare

o Run a busybox shell, in order to have a shell that is the
same as that in /bin of the container FS

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 37 /87

Outline

6 Container initialization after start-up

38

Performing initialization steps inside the container

@ After the child process has been created, there are still some
set-up steps to be done

@ We perform those steps in another script
o consh/consh_post_setup.sh

@ Execution of that script is automated using the ENV
environment variable
o If ENV is defined, then a newly launched shell will execute
the script it points to on start-up

@ = Child shell launched by unshare automatically executes
consh/consh_post_set.sh

o As its first step, that script unsets ENV, so the script won't
be executed by future shells run within container:

‘ unset ENV

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 39 /87

Setting up the container root FS: pivot_root(8)

@ Our “container” shell inherited the list of mounts from the

initial mount NS

@ We want to drop those mounts, and use our overlay

mount as the root FS

e Can do this with pivot_root(8) command:

pivot_root new_root put_old

o Moves existing root mount of mount NS (and all
descendant mounts) to put_old

o Makes new_root the new root mount

o Later, we will unmount old root FS

o (pivot_root(8) is built on pivot_root(2) syscall)

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

40 / 87

The effect of pivot_root(8)

Before

inode 2 STTTTTTTTT T oeeIl

[new_root] [pro c]
inode 999 -

@ new_root is made the new root mount

@ Old root mount (along with all descendant mounts) is
shifted to put_old

@ Background notes: the root directory on a FS is always at inode 2;
here, hypothetically, new_root has inode number 999

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 41 / 87

pivot_root(8) rules

@ There are many rules governing use of pivot_root...
o (See pivot_root(2) manual page)

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 42 / 87

pivot_root(8) rules

@ new_root and put_old must be directories and must not be
on same mount as the current root mount
@ put_old must be at or underneath new_root
e This allows us to subsequently unmount old root FS
@ new_root must be a path for an existing mount

o (pivot_root() is essentially shuffling entries in mount list, so
new__root must be a mount)

o We can ensure new_root is a mount by bind mounting that
path onto itself

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 43 / 87

pivot_root(8) rules

@ To ensure that pivot_root(8) does not propagate changes to
any other mount NS:

o (Propagation is a mechanism whereby mounts in one NS
automatically propagate to other NSs; we don't want this)

o Propagation type of parent mount of new_root and parent
of current root must not be “shared”

o If put_old is an existing mount, its propagation type must
not be “shared”

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 44 / 87

consh/consh_post_setup.sh

Again, we'll make a script, consh/consh_post_setup.sh:

mount --make-rprivate /

mount --bind merged merged
mkdir merged/oldrootfs

pivot_root merged merged/oldrootfs

cd /

@ Ensure that no mounts have shared propagation
@ Ensure that new root (merged) is a mount point

@ Create a directory under new root (oldrootfs), so that
current root can be moved there

o Pivot the root directory

@ At this point, the root current directory of our shell is
outside (above) the new root directory; fix that

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

45 / 87

consh/consh_post_setup.sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys
mount -t cgroup2 cgroup2 /sys/fs/cgroup

mkdir -p /dev/mqueue
mount -t mqueue mqueue /dev/mqueue

@ Mount /sys + some NS-related pseudofilesystems

e So that we have mounts that are consistent with PID, IPC,
and cgroup NSs of our container

o In particular, /proc mount ensures that ps(1) works!

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 46 / 87

consh/consh_post_setup.sh

for name in full null random tty urandom zero; do
touch /dev/$name
mount --bind oldrootfs/dev/$name /dev/$name
done

e Add some useful devices, by bind mounting to devices
under old root FS

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 47 / 87

consh/consh_post_setup.sh

o Unmount old root mount:

umount -1 oldrootfs
rmdir oldrootfs # Remove now-unused mount point

o This does a lazy unmount of the old root, and all of its
descendant mounts

o See description of MNT_DETACH in umount(2)

o For obscure reasons, must be done after mounting /proc
@ https://lore.kernel.org/lkml/87tvsrjai0.fsf@xmission.com/T/

o Set hostname using value passed via environment variable:

‘ hostname $HOSTNAME ‘

o And that’s it!

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 48 / 87

https://lore.kernel.org/lkml/87tvsrjai0.fsf@xmission.com/T/

Outline

7 Demo: starting up the container

49

Demo

o Let’s use our scripts to create a container

@ We do the following as an unprivileged user:

$ id
uid=1000(mtk) gid=1000(mtk) groups=1000(mtk),10(wheel)

@ Create a directory for our work; inside that directory we
create the base image for the union mount:

$ cd consh

$ mkdir demo

$ cd demo

$../create_lowerfs.sh lower

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

50 / 87

Demo

@ Start the container, creating overlay mount at ./merged:

‘$../consh_setup.sh -c consh_cgrp -h tekapo lower .

o We are now running a shell in our “container”
o The shell is in the cgroup consh_cgrp

@ Because we'll be hopping between shells, make prompt of
this shell more distinctive:

/ # PS1="bbsh# " # Change the shell prompt

bbsh#

man?7.org
©2025, Michael Kerrisk

@mbkerrisk Linux containers in (less than) 100 lines of shell 51 /87

Outline

8 Demo: namespaces inside the container

52

PID namespaces

@ From inside container, show PID of shell; use ps:

bbsh# echo $$
1

bbsh# ps ax # List all processes
PID USER TIME COMMAND

10 0:00 busybox sh

15 0 0:00 ps

o Shell was first process in a new PID NS, and so got PID 1
o Processes outside the container are not visible

@ From outside container, show PID of shell in initial PID NS:

$ ps -C busybox
PID TTY TIME CMD
26926 pts/3 00:00:00 busybox

o What's going on?

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 53 / 87

PID namespaces

@ PID NSs exist in hierarchies
e Each PID NS has a parent, which has a parent... back to
initial PID NS
@ A process that is member of a PID NS is also visible (i.e.,
has a PID in) in all ancestor NSs
o /proc/PID/status shows shell's PID in each PID NS:

$ grep NStgid /proc/26926/status
NStgid: 26926 1

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 54 / 87

Mount namespaces

@ From outside the container (because busybox doesn't
provide findmnt), view the mount tree of the container:

$ findmnt -o 'target,source,fstype' -N 26926
TARGET SOURCE FSTYPE
/ overlay overlay
/dev tmpfs tmpfs
L_/dev/mqueue mqueue mqueue
/sys sysfs sysfs
L/sys/fs/cgroup cgroup2[...] cgroup2
/proc proc proc

e This is a different (and smaller) set of mounts than is seen
outside the container

o The container has its own mount NS

o (=N <pid> == show mounts in mount NS of <pid>
rather than /proc/self/mountinfo)

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 55 / 87

User namespaces

@ From inside container, show credentials of shell:

bbsh# id
uid=0 gid=0 groups=65534,65534,65534,0

o The supplementary groups are messy, but it's the best we
can do from a script
o (One of the untidy corners of our container...)

@ From outside the container, show credentials of the shell:

$ grep '[UGlid' /proc/26926/status
Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000

e UID 1000 outside container was mapped to 0 inside via
creation of a UID map for container’s user NS:

$ cat /proc/26926/uid_map
0 1000 1

o Mapping was created by unshare --map-root-user

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 56 / 87

UTS namespaces

@ From inside container, view the hostname, and change it:

bbsh# hostname

tekapo

bbsh# hostname langwied
bbsh# hostname
langwied

o Container is in a new UTS NS, so user can change

hostname

man?7.org
©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

57 / 87

Outline

9 Superuser inside a container

58

Superuser inside a container

@ In previous demo, we changed the container's hostname
@ How is that possible?
o (Since privilege is required)
@ And could a process inside container do superuser-y things
outside the container?
o (We certainly hope not, since unprivileged users can create
containers)

@ How can a process be privileged inside a container
while being unprivileged outside the container?

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 59 / 87

Namespace relationships

Some things we need to know:
@ Each non-user NS governs some type of global resource
Mount NS: mounts
o UTS NS: hostname
o Network NS: NW resources

e etc.

o Each non-user NS is owned by a user NS
o Ownership is established when non-user NS is created

@ When our container was created, new instances of each NS
type were created, including a new user NS

@ Because all NSs were created at same time, kernel made
the new user NS the owner of the other new NSs

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 60 / 87

Capabilities and superuser powers inside a container

o Kernel (automatically) grants all capabilities to first
process in a new user NS

o All capabilities == superuser powers

@ Show capabilities of our container shell:

bbsh# grep -E 'Cap(Prm|Eff)' /proc/$$/status
CapPrm: OO0OOO1ffffffffff
CapEff: 000001ffffffffff

o All permitted and effective capabilities...
e “=ep” as would be shown by getpcaps(8)

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

61/ 87

What does it mean to be superuser inside a NS?

@ But those superuser powers have effect only inside container,
because...

@ Root power in a user NS == privilege over resources
governed by non-user NSs owned by the user NS

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 62 / 87

Containers and namespaces

Initial
user NS

Initial Initial Initial
UTS NS mnt NS NW NS
‘ \\‘\._ is child of
; | A NS
! UTS NS | mnt NS NW NS | (a user NS)
: (hostname) | | |(mnttist) | | (NW infra) | / isowned by
:‘ AR » : A 4 ! (a user NS)
RS “~._\ | init process R <7 [Notal ! is member of
(PID 1) Container} insiwel an)
\“\ caps: Tep ,"/- | shown '

@ “Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS
@ And does not have privilege in outside user NS

o (E.g., can't change mounts seen by processes outside container)
man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 63 / 87

Namespace relationships

From a shell outside container, use my namespaces_of.go to
compare (some) NSs of that shell with NSs of container shell:

$ echo $$
28736
$ sudo go run namespaces/namespaces_of.go 28736 26926
user {4 4026531837} <UID: 0> # Initial user NS
[28736 1
cgroup {4 4026531835}
[28736]
ipc {4 4026531839}
[28736]
mnt {4 4026531841}
[28736]
]

[...
user {4 4026534280} <UID: 1000> # User NS of the container
[26926]
cgroup {4 4026534285} # Indentation indicates ownership
[26926]
ipc {4 4026534283}
[26926 1
mnt {4 4026534281}
[26926 1
[...]

@ The container has its own user NS, which owns other NSs

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 64 / 87

Outline

10 Demo: cgroups inside the container

65

Demo: cgroups

@ From a shell outside the container, let's look at the
container’s cgroup:

$ cat /sys/fs/cgroup/consh_cgrp/cgroup.procs
26911
26926
$ ps 26911 26926
PID TTY STAT TIME COMMAND
26911 pts/1 S 0:00 unshare --user --map-root —--pid ...
26926 pts/1 S+ 0:00 busybox sh # Our container shell

o Another small untidiness: unshare process shouldn’t be in
the cgroup; we can manually move it out if we care

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 66 / 87

Demo: cgroups

@ Inside the container, show cgroup membership of the shell:

bbsh# cat /proc/1/cgroup
©@g8/

o Shell is in cgroup consh_cgrp...
e But remount of cgroup2 FS ensured a correctly virtualized
path when looking from inside container
o l.e., in cgroup NS of our container, consh_cgrp is the root
cgroup
@ How does cgroup membership of the container shell look
from a shell in the outside world?

$ cat /proc/26926/cgroup
0::/consh_cgrp

o This (different) path is consistent with the fact that we are
looking from a different cgroup NS

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 67 / 87

Demo: cgroup delegation

Let's look at cgroup directory and some files inside to see
the effect of delegation:

$ 1s -1d /sys/fs/cgroup/consh_cgrp

drwxr-xr-x. 3 mtk

mtk O Feb

1

115}

$ 1s -1 /sys/fs/cgroup/consh_cgrp

total O

-r--r--r--. 1 root
-r--r--r--. 1 root
ST TR mtk

1
-r--r--r--. 1 root
-rw-r--r--. 1 mtk
-rw-r--r--. 1 mtk
-rw-r--r--. 1 root

root O Feb
root O Feb

mtk O Feb
root O Feb
mtk O Feb
mtk O Feb
root O Feb

1
1

3
1
1
1
1

15:
00:

10:
15:
15:
15:
15:

20

19
11

38
19
19
19
19

/sys/fs/cgroup/consh_cgrp

cgroup.controllers
cgroup.events

cgroup.procs
cgroup.stat

cgroup.subtree_control
cgroup.threads
cgroup.type

man7.org

o Cgroups created under

mtk

consh_cgrp will also be owned by

©2025, Michael Kerrisk

©mbkerrisk

Linux containers in (less than) 100 lines of shell

68 / 87

Demo: setting cgroup limits

@ From a shell outside container, set a CPU limit for cgroup:

‘$ sudo sh -c 'echo 5000 10000 > /sys/fs/cgroup/consh_cgrp/cpu.max' ‘

e 50% of one CPU

@ And copy a (statically linked) program that burns CPU into
the container FS:

$ cd consh/demo
$ cp ../../timers/cpu_burner upper/

@ From inside container, run that program:

bbsh# /cpu_burner

[17] %CPU = 51.36

[17] %CPU = 50.00

[17] ¥%CPU = 50.00
man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 69 / 87

Outline

11 Demo: networking

70

Demo: networking

@ Let's use a virtual NW device to achieve NW connectivity
into our container

@ All steps are done using the standard ip netns command
o See also the script, consh/consh_nw_setup.sh

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 71 /87

Ip netns

@ One hurdle: normally, we create a NW NS using
ip netns add <name>

o Creates a bind mount for NS in /var/run/netns

e That mount is used in subsequent ip netns commands
in order to reach the NS

@ Our container’s NW NS has already been created, but we
still need the bind mount for our ip netns commands

@ = we create the bind mount manually from a shell outside
the container:

$ sudo mkdir -p /var/run/netns # Ensure directory exists
$ sudo touch /var/run/netns/consh # Create the mount point
$ sudo mount --bind /proc/26926/ns/net /var/run/netns/consh

e Our bind mount is named consh

e /proc/26926/ns/net is NW NS of our container shell

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 72 /87

Setting up network infrastructure

From a root shell outside the container, we now set up some NW
infrastructure:

o Create a pair of connected virtual Ethernet (veth) devices:

sudo bash
ip link add vethO type veth peer name vethl

o We named the two devices vethO and vethl

@ Move the vethl device into our container:

ip link set vethl netns consh

@ Assign IP addresses to both veth devices & bring them up:

ip address add 10.0.0.1/24 dev vethO

ip link set vethO up

ip netns exec consh ip address add 10.0.0.2/24 dev vethl
ip netns exec consh ip link set vethl up

H HH

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 73 /87

Setting up network infrastructure

Returning to our container shell:

@ Show that the veth1 device is present in the container:

bbsh# ip link show vethl

link/ether 2e:c2:13:c5:4e:b8 brd ff:ff:ff:ff:ff:ff

282: veth1@if283: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> ...

man?7.org

©2025, Michael Kerrisk ©mkerrisk Linux containers in (less than) 100 lines of shell

74 / 87

Demonstrating network connectivity

@ How can we easily fire up a NW server inside the container?
o busybox does Netcat (jGenial!)

@ Inside our container, start a listening server on port 50000:

bbsh# nc -1 -p 50000 -e sh -c \
's=; while true; do s=x$s; echo $s; sleep 1; done'

o After accepting a connection, server script sends strings of
ever-increasing length
@ From a shell outside the container, we connect to the server
and see:

nc 10.0.0.2 50000
X

XX

XXX

XXXX

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 75 / 87

Outline

12 One more thing

76

If this is a “decent” container,
we should be able to do
one more thing...

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 77/ 87

Can we create a container
inside a container?

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 78 / 87

A container inside a container

What are the hurdles?
@ The busybox unshare applet doesn't support --cgroup

o = We'll use a statically linked version of the standard
unshare program provided by util-linux

@ consh_setup.sh uses sudo, but busybox has no sudo applet

o But, we don't need sudo because container shell already has
all capabilities

o = We'll edit the script

@ We need a union mount for inner container, but upper layer
in OverlayFS can’t itself be an OverlayFS mount

o IOW: we can't use FS of outer container in upper layer of
inner container’s FS

e = Mount a new tmpfs + create union mount layers there

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 79 / 87

Creating the outer container

o First, we create the outer container:

$ cd consh

$ mkdir demo

$ cd demo

$../create_lowerfs.sh lower

$../consh_setup.sh -c cgrp -h tekapo lower .

/ # PS1="bbsh# " # Change the shell prompt

bbsh#

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 80 / 87

Preparations for the inner container

@ Now we need to copy the files into outer container that will
be used to set up inner container...

@ From a shell outside the container, we copy our scripts into
the container FS:

$ cd consh
$ cp *.sh demo/upper/

@ And edit the scripts to remove the sudo strings:

‘$ sed -i 's/sudo //' demo/upper/*.sh ‘

@ And copy in a statically linked version of the standard
unshare command:

$ rm demo/lower/bin/unshare
Steps to build unshare.static omitted
$ cp /some/path/util-linux/unshare.static demo/lower/bin/unshare

man?7.org

©2025, Michael Kerrisk ©mbkerrisk Linux containers in (less than) 100 lines of shell 81 / 87

Starting the inner container

Qo Returning to our outer container, we mount a tmpfs FS
where we will create the components of the union mount for
the inner container:

bbsh# mkdir demo_inner
bbsh# mount -t tmpfs tmpfs demo_inner

@ Create the lower layer for the union mount:

bbsh# cd demo_inner
bbsh# ../create_lowerfs.sh lower

@ Start the inner container:

bbsh# ../consh_setup.sh -c cgrp_2 -h pukaki lower .
L #

e "/ #"is prompt of busybox shell in inner container...

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 82 /87

Examining the inner container

@ Start a sleep process in the inner container:

‘/ # /bin/sleep 1000 # Full path to avoid 'sleep' built-in ‘

o We use absolute pathname to avoid use of sleep built-in
command (which would not create separate process)

@ From a shell in the initial NS, obtain PID of sleep:

$ pidof sleep
69884

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 83 /87

Examining the inner container

@ Let's use my namespaces/namespaces_of.go to compare
some NSs of a shell in initial NSs with NSs of sleep:

$ go run namespaces_of.go --namespaces=user,cgroup,pid,uts $$ 69884
user {4 4026531837} <UID: 0> # Initial user NS
[56734]
cgroup {4 4026531835}
[66734]
pid {4 4026531836}
[66734]
uts {4 4026531838}
[66734]
user {4 4026534072} <UID: 1000> # User NS of outer container
user {4 4026532574} <UID: 1000> # User NS of inner container
[69884]
cgroup {4 4026534004}
[69884 1
pid {4 4026534003}
[69884]
uts {4 4026534001}
[69884]

o sleep is in grandchild user NS that owns various other NSs
o sleep is also a member of those other NSs

man7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 84 / 87

Examining the inner container

@ Display PID of sleep in all PID NSs where it is present:

$ grep NStgid /proc/69884/status
NStgid: 69884 54 17

o Three PIDs = sleep is in a grandchild PID NS
o Verify by using my program to examine PID NS hierarchy:

$ sudo go run namespaces_of.go --pidns 69884
pid {4 4026531836} # Initial PID NS
pid {4 4026535236} # PID NS of outer container
pid {4 4026534583} # PID NS of inner container
[69884]

@ Display cgroup membership of sleep:

$ cat /proc/69884/cgroup
0::/cgrp/cgrp_2

e Itis in a child cgroup of the outer container's cgroup

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 85 / 87

Sure does look like a container
inside a container!

man?7.org

©2025, Michael Kerrisk @mbkerrisk Linux containers in (less than) 100 lines of shell 86 / 87

Thanks!

Michael Kerrisk, Trainer and Consultant
http://man7.org/training/

mtk@man7.org @mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

THE LINUX
PROGRAMMING
INTERFACE

http://man7.org/training/
http://man7.org/conf/
http://man7.org/tlpi/code/

	Linux containers in (less than) 100 lines of shell 1
	Building a container from the shell 4
	Constructing the container filesystem 9
	Isolating the container: namespaces 19
	Isolating the container: cgroups 26
	Set-up and container start-up 29
	Container initialization after start-up 38
	Demo: starting up the container 49
	Demo: namespaces inside the container 52
	Superuser inside a container 58
	Demo: cgroups inside the container 65
	Demo: networking 70
	One more thing 76

